Japanse stelling

nl

WikiRank.net
ver. 1.6.2

Japanse stelling

Quality:

Japanese theorem for cyclic polygons - theorem that no matter how one triangulates a cyclic polygon, the sum of inradii of triangles is constant. Article “Japanse stelling” in Dutch Wikipedia has 2.7 points for quality (as of July 1, 2025).

This article has the best quality in Turkish Wikipedia. However, the most popular language version of this article is English.

Since the creation of article “Japanse stelling”, its content was written by 14 registered users of Dutch Wikipedia and edited by 133 registered Wikipedia users in all languages.

The article is cited 3 times in Dutch Wikipedia and cited 79 times in all languages.

The highest Authors Interest rank from 2001:

  • Local (Dutch): #29285 in November 2017
  • Global: #65230 in December 2015

The highest popularity rank from 2008:

  • Local (Dutch): #138862 in March 2008
  • Global: #378534 in December 2008

There are 14 language versions for this article in the WikiRank database (of the considered 55 Wikipedia language editions).

The quality and popularity assessment was based on Wikipédia dumps from July 1, 2025 (including revision history and pageviews for previous years).

The table below shows the language versions of the article with the highest quality.

Languages with the highest quality

#LanguageQuality gradeQuality score
1Turkish (tr)
Kirişler çokgenleri için Japon teoremi
25.3863
2Greek (el)
Ιαπωνικό θεώρημα
25.2391
3Japanese (ja)
日本の定理
25.0356
4Arabic (ar)
مبرهنة يابانية في مضلع دائري
23.0507
5English (en)
Japanese theorem for cyclic polygons
20.6522
6French (fr)
Théorème japonais
18.69
7Catalan (ca)
Teorema japonès per a polígons cíclics
18.2797
8Spanish (es)
Teorema japonés para polígonos cíclicos
15.5159
9Hebrew (he)
המשפט היפני למצולעים ציקליים
9.2717
10Polish (pl)
Twierdzenie japońskie
6.3008
More...

The following table shows the most popular language versions of the article.

Most popular in all the time

The most popular language versions of the article "Japanse stelling" in all the time
#LanguagePopularity awardRelative popularity
1English (en)
Japanese theorem for cyclic polygons
84 745
2Japanese (ja)
日本の定理
14 054
3Korean (ko)
일본인의 정리
13 539
4German (de)
Japanischer Satz für in einen Kreis einbeschriebene Polygone
12 384
5French (fr)
Théorème japonais
12 263
6Polish (pl)
Twierdzenie japońskie
7 873
7Dutch (nl)
Japanse stelling
5 716
8Arabic (ar)
مبرهنة يابانية في مضلع دائري
5 047
9Ukrainian (uk)
Японська теорема про вписані в коло многокутники
3 771
10Spanish (es)
Teorema japonés para polígonos cíclicos
851
More...

The following table shows the language versions of the article with the highest popularity in the last month.

Most popular in June 2025

The most popular language versions of the article "Japanse stelling" in June 2025
#LanguagePopularity awardRelative popularity
1English (en)
Japanese theorem for cyclic polygons
553
2Japanese (ja)
日本の定理
148
3Korean (ko)
일본인의 정리
37
4French (fr)
Théorème japonais
30
5German (de)
Japanischer Satz für in einen Kreis einbeschriebene Polygone
19
6Dutch (nl)
Japanse stelling
14
7Hebrew (he)
המשפט היפני למצולעים ציקליים
13
8Polish (pl)
Twierdzenie japońskie
13
9Spanish (es)
Teorema japonés para polígonos cíclicos
9
10Arabic (ar)
مبرهنة يابانية في مضلع دائري
7
More...

The following table shows the language versions of the article with the highest Authors’ Interest.

The highest AI

Language versions of the article "Japanse stelling" with the highest Authors Interest (number of authors). Only registered Wikipedia users were taken into account.
#LanguageAI awardRelative AI
1English (en)
Japanese theorem for cyclic polygons
31
2French (fr)
Théorème japonais
24
3German (de)
Japanischer Satz für in einen Kreis einbeschriebene Polygone
17
4Dutch (nl)
Japanse stelling
14
5Polish (pl)
Twierdzenie japońskie
10
6Ukrainian (uk)
Японська теорема про вписані в коло многокутники
7
7Japanese (ja)
日本の定理
6
8Korean (ko)
일본인의 정리
6
9Arabic (ar)
مبرهنة يابانية في مضلع دائري
5
10Catalan (ca)
Teorema japonès per a polígons cíclics
3
More...

The following table shows the language versions of the article with the highest Authors’ Interest in the last month.

The highest AI in June 2025

Language versions of the article "Japanse stelling" with the highest AI in June 2025
#LanguageAI awardRelative AI
1Arabic (ar)
مبرهنة يابانية في مضلع دائري
0
2Catalan (ca)
Teorema japonès per a polígons cíclics
0
3German (de)
Japanischer Satz für in einen Kreis einbeschriebene Polygone
0
4Greek (el)
Ιαπωνικό θεώρημα
0
5English (en)
Japanese theorem for cyclic polygons
0
6Spanish (es)
Teorema japonés para polígonos cíclicos
0
7French (fr)
Théorème japonais
0
8Hebrew (he)
המשפט היפני למצולעים ציקליים
0
9Japanese (ja)
日本の定理
0
10Korean (ko)
일본인의 정리
0
More...

The following table shows the language versions of the article with the highest number of citations.

The highest CI

Language versions of the article "Japanse stelling" with the highest Citation Index (CI)
#LanguageCI awardRelative CI
1Greek (el)
Ιαπωνικό θεώρημα
29
2English (en)
Japanese theorem for cyclic polygons
11
3Japanese (ja)
日本の定理
7
4Arabic (ar)
مبرهنة يابانية في مضلع دائري
5
5German (de)
Japanischer Satz für in einen Kreis einbeschriebene Polygone
5
6French (fr)
Théorème japonais
5
7Ukrainian (uk)
Японська теорема про вписані в коло многокутники
5
8Korean (ko)
일본인의 정리
4
9Dutch (nl)
Japanse stelling
3
10Spanish (es)
Teorema japonés para polígonos cíclicos
2
More...

Scores

Estimated value for Wikipedia:
Dutch:
Global:
Popularity in June 2025:
Dutch:
Global:
Popularity in all years:
Dutch:
Global:
Authors in June 2025:
Dutch:
Global:
Registered authors in all years:
Dutch:
Global:
Citations:
Dutch:
Global:

Quality measures

Interwikis

#LanguageValue
arArabic
مبرهنة يابانية في مضلع دائري
caCatalan
Teorema japonès per a polígons cíclics
deGerman
Japanischer Satz für in einen Kreis einbeschriebene Polygone
elGreek
Ιαπωνικό θεώρημα
enEnglish
Japanese theorem for cyclic polygons
esSpanish
Teorema japonés para polígonos cíclicos
frFrench
Théorème japonais
heHebrew
המשפט היפני למצולעים ציקליים
jaJapanese
日本の定理
koKorean
일본인의 정리
nlDutch
Japanse stelling
plPolish
Twierdzenie japońskie
trTurkish
Kirişler çokgenleri için Japon teoremi
ukUkrainian
Японська теорема про вписані в коло многокутники

Popularity rank trends

Best Rank Dutch:
#138862
03.2008
Global:
#378534
12.2008

AI rank trends

Best Rank Dutch:
#29285
11.2017
Global:
#65230
12.2015

Languages comparison

Important global interconnections (July 2024 – June 2025)

Wikipedia readers most often find their way to information on Japanese theorem for cyclic polygons from Wikipedia articles about Carnots theorem, Japanese mathematics, Sangaku, Japanese theorem for cyclic quadrilaterals and Equal incircles theorem. Whereas reading the article about Japanese theorem for cyclic polygons people most often go to Wikipedia articles on Carnots theorem, Japanese theorem for cyclic quadrilaterals, Sangaku, Thébaults theorem and Carnots theorem.

Cumulative results of quality and popularity of the Wikipedia article

List of Wikipedia articles in different languages (starting with the most popular):

News from 28 January 2026

On 28 January 2026 in multilingual Wikipedia, Internet users most often read articles on the following topics: 2025–26 UEFA Champions League, Nipah virus, Doomsday Clock, UEFA Champions League, Elena Rybakina, Donald Trump, 2026 European Men's Handball Championship, killing of Alex Pretti, Kristi Noem, deaths in 2026.

In Dutch Wikipedia the most popular articles on that day were: Vincent Kompany, Glennis Grace, Remko Pasveer, Kristi Noem, Lijst van James Bondfilms, Doemdagklok, Eddy Terstall, Maarten Paes, Rob Jetten, Raye.

About WikiRank

The WikiRank project is intended for automatic relative evaluation of the articles in the various language versions of Wikipedia. At the moment the service allows to compare over 44 million Wikipedia articles in 55 languages. Quality scores of articles are based on Wikipedia dumps from July, 2025. When calculating current popularity and AI of articles data from June 2025 was taken into account. For historical values of popularity and AI WikiRank used data from 2001 to 2025... More information